Gas-Sensing Devices Based on Zn-Doped NiO Two-Dimensional Grainy Films with Fast Response and Recovery for Ammonia Molecule Detection
نویسندگان
چکیده
Zn-doped NiO two-dimensional grainy films on glass substrates are shown to be an ammonia-sensing material with excellent comprehensive performance, which could real-time detect and monitor ammonia (NH3) in the surrounding environment. The morphology and structure analysis indicated that the as-fabricated semiconductor films were composed of particles with diameters ranging from 80 to 160 nm, and each particle was composed of small crystalline grain with a narrow size about 20 nm, which was the face-centered cubic single crystal structure. X-ray diffraction peaks shifted toward lower angle, and the size of the lattice increased compared with undoped NiO, which demonstrated that zinc ions have been successfully doped into the NiO host structure. Simultaneously, we systematically investigated the gas-sensing properties of the Zn-doped NiO sensors for NH3 detection at room temperature. The sensor based on doped NiO sensing films gave four to nine times faster response and four to six times faster recovery speeds than those of sensor with undoped NiO films, which is important for the NiO sensor practical applications. Moreover, we found that the doped NiO sensors owned outstanding selectivity toward ammonia.
منابع مشابه
Preparation of NiO two-dimensional grainy films and their high-performance gas sensors for ammonia detection
Semiconductor NiO two-dimensional grainy films on glass substrates are shown to be an ammonia-sensing devices with excellent comprehensive performance, such as the good stability, short response time, outstanding recovery performance, excellent sensitivity, and selectivity. The morphology and structure analysis of gas sensing materials indicated that the as-fabricated NiO films was uniform and ...
متن کاملA theoretical study on the adsorption behaviors of Ammonia molecule on N-doped TiO2 anatase nanoparticles: Applications to gas sensor devices
We have performed density functional theory investigations on the adsorption properties of ammonia molecule on the undoped and N-doped TiO2 anatase nanoparticles. We have geometrically optimized the constructed undoped and N-doped nanoparticles in order to fully understand the adsorption behaviors of ammonia molecule. For TiO2 anatase nanoparticles, the binding site is preferentially located on...
متن کاملA theoretical study on the adsorption behaviors of Ammonia molecule on N-doped TiO2 anatase nanoparticles: Applications to gas sensor devices
We have performed density functional theory investigations on the adsorption properties of ammonia molecule on the undoped and N-doped TiO2 anatase nanoparticles. We have geometrically optimized the constructed undoped and N-doped nanoparticles in order to fully understand the adsorption behaviors of ammonia molecule. For TiO2 anatase nanoparticles, the binding site is preferentially located on...
متن کاملDMMP Sensing Performance of Undoped and Al Doped Nanocrystalline ZnO Thin Films Prepared by Ultrasonic Atomization and Pyrolysis Method
Highly textured undoped (pure) and Al doped ZnO nanocrystalline thin films prepared by ultrasonic atomization and pyrolysis method are reported in this paper. ZnCl2 water solution was converted into fine mist by ultrasonic atomizer (Gapusol 9001 RBI Meylan, France). The mist was pyrolyzed on the glass substrates in horizontal quartz reactor placed in furnace. The Structural and microstructural ...
متن کاملSensing Performance of Sc-doped B12N12 Nanocage for Detecting Toxic Cyanogen Gas: A Computational Study
Adsorption of cyanogen molecule on the surface of pristine and Sc-doped B12N12 nanocage is scrutinized using at DFT calculations to investigating its potential as chemical nanosensors. The results show that cyanogen is weakly adsorbed on the pristine B12N12 and consequently its electrical properties are changed insignificantly. In order to improve the...
متن کامل